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Abstract— In this paper, we propose a vision-based approach
for roadside vegetation detection by superpixel matching with
local context. Unlike previous detection methods which seek
help from additional sensors such as lidar, our algorithm
only requires an off-the-shelf camera. The proposed method
contains two stages. In the first stage, a superpixel database
is constructed by segmenting training images into superpixels,
and each superpixel patch is represented with multiple features.
After that, the appearance information of vegetation or non-
vegetation is encoded in the superpixel database. In the second
stage, vegetation detection in each testing image is achieved
by superpixel matching. The test image is segmented into
superpixels and the (vegetation) label cost of each superpixel
is derived by comparing with the k-nearest neighbors in the
superpixel database. Furthermore, we incorporate the local
context information through the feedback to refine superpixel
matching. Taking this context information into account, Markov
Random Field (MRF) is utilized to further improve the classi-
fication accuracy. Besides, considering the stable layout of road
scene images, we utilize spatial priors of road scene to guide
vegetation classification. Experiments on real-world datasets
demonstrate the promise of our method.

I. INTRODUCTION

For safe navigation the autonomous vehicle may need to
be able to detect vegetation on the side of the road as it
travels along (see Figure 1). Vegetation detection also helps
to match the current environment with the navigation map
for localization [12]. To address the problem of vegetation
detection, numerous methods have been proposed [2], [5],
[12]–[15], [19], [21].

One of the remarkable methods of vegetation detection
for outdoor navigation is proposed by Bradley et al. [5].
The method utilizes multiple spectrum camera to generate
thermal images for analysis and vegetation detection. Despite
generating promising results, the method is unstable in the
presence of illumination variations because it depends on
trusted data acquisition. In [21], Wellington et al. propose a
generative model to detect vegetation which exploits natural
structure inherent in outdoor domains. Vandapel et al. [19]
suggest a vegetation detection method by interpreting laser
data. This approach utilizes 3D points statistics to compute
saliency features that capture the spatial distribution of points
in a local neighborhood, which is computationally expen-
sive. In [12], Nguyen et al. propose a 2D-3D combination
algorithm which is able to utilize complement of three-
dimensional point distribution and color descriptor. In [13],

Fig. 1. Detection results on testing images illustrating performance of our
approach. First row: testing images. Second row: detection results. Third
row: ground truth. In detection results, the green region is vegetation area
which is correctly detected, blue region represents non-vegetation area which
is mistakenly detected as vegetation, and red region is vegetation area which
is not detected. It can be observed that some objects (e.g., vehicles and
roadside signs) are misclassified as vegetation, representing areas for future
improvements.

a spreading algorithm is suggested for vegetation detection
in a cluttered outdoor environment. In [15], Nguyen et al.
present a detection approach which enables a double-check
process for vegetation detection done by a multi-spectral
method while focusing on passable vegetation detection.

Despite promising results for vegetation detection, the
aforementioned approaches seek help of non-vision sensors
such as lasers. In this work, by contrast, our goal is to try
solving the problem of roadside vegetation detection purely
by computer vision, requiring nothing more than an ordinary
camera.

We propose a novel vision-based vegetation detection
method. The problem of vegetation detection is formulated
as a classification task which differentiates the vegetation
pixels from non-vegetation pixels. This classification process
consists of two stages. In the first stage, we construct a su-
perpixel dataset by assembling the superpixels from training
images. For robust matching, each superpixel is represented
with multiple features. In this way, the appearance infor-
mation of vegetation and non-vegetation is encoded in the
superpixel database. In the second stage, a test image is firstly
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Fig. 2. Framework of the proposed method. In detection result, the green region is vegetation area which is correctly detected, blue region represents
non-vegetation area which is mistakenly detected as vegetation, and red region is vegetation area which is not detected.

segmented into superpixels. Then, the vegetation label cost
of each superpixel is derived from its k-nearest neighbors
in the superpixel dataset built in the first stage. Each pixel
inherits the label cost from the superpixel it belongs to.
Furthermore, to refine superpixel matching, we incorporate
the local context information through a feedback mechanism.
Besides, considering the stable layout of road scene images,
we exploit spatial prior of road scene to guide vegetation
classification. Finally, all these information is unified in the
MRF inference framework to achieve pixel classification.
Figure 2 illustrates the framework of our method.

Our method does not require additional information from
non-vision sensors. For this reason it is difficult to benchmark
it against other methods. In our experiments, we use three
cross-validation datasets which consist of three different real-
world datasets. Experimental results illustrate the effective-
ness of the proposed algorithm for vegetation detection.

Our contributions can be summarized as follows:

• A framework for vegetation detection based only on
visual inputs is proposed and tested in a cross-validation
setting.

• Taking the benefit of relative stability of road scene
layout, we utlize spatial prior of road scene to guide
vegetation classification.

• A feedback mechanism is adopted to refine the super-
pixel matching through incorporating the local context
information, thereby resulting in further improvement
of final classification results.

The rest of this paper is organized as follows. In Section
II, we introduce the proposed vegetation detection algorithm
in details. Section III presents experimental results and
evaluation of the proposed methods, followed by conclusion
in Section IV.

II. THE PROPOSED VEGETATION DETECTION
ALGORITHM

In this section, we will introduce our detection approach
in details. Section II-A describes the process of construct-
ing training superpixel database and superpixel matching.
Incorporation of local context information is introduced in
Section II-B. Section II-C exploits the spatial prior of road
scene images to guide vegetation detection. And, all these
components are integrated in the MRF framework introduced
in Section II-D.

A. Superpixel dataset construction and superpixel matching

To develop the superpixel dataset, we oversegment the
training images to generate N superpixels using the al-
gorithm in [9]. For each superpixel si, we extract four
kinds of features including the SIFT histogram [11], RGB
histogram, location histogram and PHOG histogram [3].
These histograms are concatenated to represent a superpixel
similar as in [23]. The SIFT descriptors of four scales per
four pixels are extracted using VLFeat1 and encoded with
five words from a vocabulary of size 1024 by the LLC
algorithm [20]. Let xi denote the feature of si, and yi
represents its label, where yi ∈ {0, 1} (1 and 0 represent
the vegetation and non-vegetation labels respectively) and is
determined by

yi =

{
1, ai > 95%

0, otherwise
(1)

where ai represents vegetation area ratio of si. We collect
all training superpixels into a database D = {si, xi, yi}Ni=1.

For each test image, let M be the number of its super-
pixels. For superpixel sj (1≤ j ≤ M ), we compute its

1VLFeat is an open source library and available at http://www.vlfeat.org/.
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(vegetation) label cost by its k-nearest neighbors Nk(j) (k
is set to 7) in D as the following

U(yj = c|sj) = 1−
∑

i∈Nk(j),yi=cK(xj , xi)∑
i∈Nk(j)

K(xj , xi)
(2)

where xj denotes the feature of sj , c ∈ {0, 1} represents the
label and K(xj , xi) is the intersection kernel2 between xj
and xi.

B. Local context descriptor

Context is a crucial feature for image classification. We
adopt a simple yet effective feedback mechanism as in [17],
[18], [23] to account for this information. In the feedback
process, we are able to obtain the pixel-wise classification
likelihood of each pixel with

`(p, c) =
1

1 + exp(U(yp = c))
(3)

where U(yp = c) is the cost of assigning label c to pixel p
in Eq (9).

For robust superpixel matching, we exploit the local con-
text of each superpixel. For superpixel si, we divide its neigh-
borhood into left, right, top, bottom cells {lc1i , lc2i , lc3i , lc4i }.
For each cell lcki (1 ≤ k ≤ 4), we compute its sparse context
hki = [hki1, h

k
i2] by

hkic = max
p∈lcki

`(p, c) (4)

where `(p, c) represents the pixel-wise classification likeli-
hood obtained by Eq (3). For superpixel si, we can obtain
spatial context descriptor hi = [h1i ;h

2
i ;h

3
i ;h

4
i ]. Thus we can

classify the superpixels of test image by Eq (2) with new
feature [xi;hi].

C. Spatial prior

For road scene images captured by vehicle mounted cam-
eras, it is easy to observe that their scenes share relatively
stable layout. Roughly speaking, the upper and bottom parts
of a road scene is mostly taken up by non-vegetation areas,
while the center part may be a vegetation area. Taking
into consideration this stable layout of road scene images,
we utilize spatial prior of road scene to guide vegetation
classification. We use spatial distribution to encode spatial
priors as in [7], [10]. For class c at pixel p, its spatial prior
histogram hc(p) is derived from the training set by

hc(p) =

∑n
k=1 f

c
k(p)

n
(5)

where n denotes the number of training samples, and f ck(p)
is an indicator which indicates whether the label of pixel p
in training sample k is c. If its label is c, we set f ck(p) to 1,
otherwise f ck(p) is equal to 0.

The spatial prior term, which indicates the probability that
class c is at p is given by

Esp(yp = c) = − log hc(p) (6)

2K(xj , xi) is defined as K(xj , xi) ≈< φ(xj), φ(xi) > in VLFeat.

In MRF inference, this spatial prior information will be
incorporated. Figure 3 visualizes the spatial prior of each
cross dataset.

(a) (b)

(c) (d)

(e) (f)
Fig. 3. Spatial priors of vegetation and non-vegetation in three cross
datasets. Images (a) and (b) are the spatial priors of vegetation and non-
vegetation in CrossDataset1, (c) and (d) in CrossDataset2 and (e) and (f) in
CrossDataset3.

D. Markov random field (MRF)

To exploit the context relationship between vegetation
pixels and non-vegetation pixels, MRF inference is utilized
for contextual constraints. The energy function is given by

E(Y ) =
∑
p

U(yp = c) + λ
∑
pq

V (yp = c, yq = c′) (7)

where p, q are pixel indices, c, c′ are candidate labels and
λ is the weight of pairwise energy. Considering the spatial
prior of road scene, we revise Eq (7) by incorporating spatial
prior term as follows

E(Y ) =
∑
p

U(yp = c) + λ
∑
pq

V (yp = c, yq = c′)

+ α
∑
p

Esp(yp = c)
(8)

where α is a weight (α is set to 0.1). The unary energy of
one pixel is given by its superpixel

U(yp = c) = U(yj = c|sj), p ∈ sj (9)

The pairwise energy on edges is given by spatially variant
label cost

V (c, c′) = d(p, q) · µ(c, c′) (10)
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where d(p, q) = exp(−‖I(p)− I(q)‖2/2σ2) (σ is the
standard deviation) is the color dissimilarity between two
adjacent pixels, and µ(c, c′) is the penalty of assigning label
c and c′ to two adjacent pixels and defined by log-likelihood
of label co-occurrence statistics

µ(c, c′) = − log[(P (c|c′) + P (c′|c))/2]× σ (11)

In this way, we are able to obtain the labels of all pixels by
performing MAP inference on E(Y ) by graph cut optimiza-
tion in [4].

Finally, we summarize the proposed vegetation detection
system in Algorithm 1.

Algorithm 1 The proposed algorithm
Stage 1: Construction of superpixel database
1: Segment training images into superpixels using

algorithm in [9];
2: Extract multiple features for each superpixel si;
3: Concatenate these features into a combined feature

xi to represent si, and yi is its label;
4: Collect all the training superpixels to construct the

superpixel database D = {si, xi, yi}Ni=1;
Stage 2: Vegetation detection for a testing image
5: Segment the testing image into M superpixels by

algorithm in [9];
6: Compute the feature xj for superpixel sj ;
7: Compute the label cost of sj by its k-nearest

neighbors Nk(j) in D based on Eq (2);
8: Compute the pixel-wise classification likelihood

of each pixel based on Eq (3);
9: Compute local context based on Eq (4);

10: Calculate the spatial prior histogram hc(p) of
the training set based on Eq (5);

11: Compute the spatial prior term based on Eq (6);
12: Perform MRF based on the revised energy

function E(Y ) in Eq (8);
13: Obtain the classification result, and segment

vegetation area from non-vegetation region;

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset

We use three datasets denoted as KITTI-Veggie3,
TOYOTA-Veggie1 and TOYOTA-Veggie24 to generate three
cross datasets which are CrossDataset1 (CD1), Cross-
Dataset2 (CD2) and CrossDataset3 (CD3) to test the pro-
posed algorithm. Table I describes the attributes of each
dataset, and Figure 4 shows some samples from each dataset.

To generate cross datasets, we treat two of the three
datasets as training samples and the rest as testing sam-
ples. We are able to obtain three cross datasets, i.e.,

3KITTI-Veggie is collected from part of KITTI Vision Benchmark which
is available at http://www.cvlibs.net/datasets/kitti/.

4TOYOTA-Veggie1 and TOYOTA-Veggie2 are collected by Toyota Tech-
nical Center.

TABLE I
DESCRIPTION OF THE THREE DATASETS.

Name Frames RGB Size
KITTI-Veggie 303 Yes 640 × 480

TOYOTA-Veggie1 434 Yes 512 × 512
TOYOTA-Veggie2 346 Yes 484 × 364

Fig. 4. Image samples of each dataset. First row: image samples in KITTI-
Veggie. Second row: image samples in TOYOTA-Veggie1. Third row: image
samples in TOYOTA-Veggie2.

CrossDataset1, CrossDataset2 and CrossDataset3. For Cross-
Dataset1, TOYOTA-Veggie1 and TOYOTA-Veggie2 are
training samples, and KITTI-Veggie is testing samples.
For CrossDataset2, TOYOTA-Veggie1 and KITTI-Veggie are
training samples, and TOYOTA-Veggie2 is testing samples.
For CrossDataset3, TOYOTA-Veggie2 and KITTI-Veggie are
training samples, and TOYOTA-Veggie1 is testing samples.

B. Experimental results

The proposed algorithm is implemented in MATLAB on
a 3.2 GHz Intel E3-1225 v1 Core PC with 8GB memory.
We run the proposed method on the three cross datasets
respectively. Table II shows the confusion matrices [13] of
the proposed method on the three cross datasets.

TABLE II
CONFUSION MATRICES OF THE PROPOSED METHOD.

Ground truth
Vegetation

(%)

Ground truth
Non-Vegetation

(%)

CD1a Vegetation 97.3 2.7
Non-Vegetation 9.66 90.34

CD2b
Vegetation 90.14 9.86

Non-Vegetation 3.56 96.44

CD3c Vegetation 97.66 2.34
Non-Vegetation 11.48 88.52

Avg Vegetation 95.03 4.97
Non-Vegetation 8.23 91.77

aCD1: CrossDataset1.
bCD2: CrossDataset2.
cCD3: CrossDataset3.

For detailed analysis, we report our results in the following
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formats: the Vegetation ∼ Ground truth Vegetation (V ∼
GV), Vegetation ∼ Ground truth Non-Vegetation (V ∼
GNV), Non-Vegetation ∼ Ground truth Vegetation (NV ∼
GV) and Non-Vegetation ∼ Ground truth Non-Vegetation
(NV ∼ GNV) for each image (frame) in the three cross
datasets. Figure 5, 6 and 7 demonstrate the V ∼ GV, V
∼ GNV, NV ∼ GV and NV ∼ GNV of each image in
CrossDataset1, CrossDataset2 and CrossDataset3. Figure 8,
9 and 10 show the detection results of some testing samples
in CrossDataset1, CrossDataset2 and CrossDataset3 with our
method.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CrossDataset1

frames

v
a

lu
e

 

 

V ~ GV

NV ~ GNV

V ~ GNV

NV ~ GV

Fig. 5. The V∼ GV, V∼ GNV, NV∼ GV and NV∼ GNV of each image
in CrossDataset1. The order of frames (X axis) is the same as that in the
original video sequences.
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Fig. 6. The V∼ GV, V∼ GNV, NV∼ GV and NV∼ GNV of each image
in CrossDataset2. The order of frames (X axis) is the same as that in the
original video sequences.

IV. CONCLUSION

In this paper we propose a novel vegetation detection
method using superpixel matching with spatial prior and
local context. Unlike previous works, our method utilizes
computer vision exclusively, which might provide overall
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Fig. 7. The V∼ GV, V∼ GNV, NV∼ GV and NV∼ GNV of each image
in CrossDataset3. The order of frames (X axis) is the same as that in the
original video sequences.

Fig. 8. Detection results of testing images in CrossDataset1. First row:
original images. Second row: classification results. Third row: detection
results. Fourth row: groundtruth. In detection result, the green region is
vegetation area which is correctly detected, blue region represents non-
vegetation area which is mistakenly detected as vegetation, and red region
is vegetation area which is not detected.

simplification of the perception system. To evaluate per-
formance of the proposed approach, we construct three
cross-validation datasets and test the proposed algorithm on
them. Experiments demonstrate that the proposed method
is promising for roadside vegetation detection. It might be
possible to apply the same method to detecting other large
roadside structures, e.g., building, in dense urban environ-
ment. For future work, the detection of vehicles and traffic
signs on the road need to be considered to improve accuracy
of the method. Besides, we will conduct more experiments
and compare our approach with other vegetation detection
methods to demonstrate the effectiveness of the proposed
algorithm.
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Fig. 9. Detection results of testing images in CrossDataset2; the coloring
is the same as in the previous figure.

Fig. 10. Detection results of testing images in CrossDataset3; the coloring
is the same as in the previous figure.
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